RATIO, PROPORTION \& RATES OF CHANGE Chapter 4: Real-Life Graphs Part 5: Speed-Time Graphs (Curves)

Starter
Video
Worksheet - I'm giving it a try!
Worksheet - I'm building my confidence!
Worksheet - I'm ready for anything!
Extension Homework

Answer 4 questions to make a straight line vertically，horizontally or diagonally．

Adam and Bob share sweets in the ratio 2 ：9．If Bob gets 35 more sweets than Adam，how many did they share？	$\begin{gathered} \begin{array}{c} \text { Simplify } \\ x^{2}-36 \end{array} \\ x^{2}+8 x+12 \end{gathered}$	1 invest $£ 3300$ in an account that earns 9\％compound interest per year． How much is it worth after 4 years？	Solve the simultaneous equations $\begin{aligned} & 3 x+9 y=75 \\ & 3 x-7 y=-21 \end{aligned}$
Expand $(x+6)(x-2)(x+5)$	Evaluate $125^{-2 / 3}$	y is inversely proportional to the square root of x ． When $y=6, x=169$ ． Find an equation for y in terms of x ．	A jumper has been reduced in a sale by 35% to $£ 38$ ． How much did it cost originally？
Calculate the nth term of the sequence $2,5,12,23,38$	The mean of 10 numbers is 6 ．The mean of 15 numbers is 10 ．What is the mean of all 25 numbers？	Rationalise $\frac{8}{\sqrt{5}}$	Solve $\begin{gathered} x^{2}-12 x+32 \\ =0 \end{gathered}$
Write $0.198198198 \ldots$ as a fraction in it＇s simplest form．	Simplify $\sqrt{32}$	Make x the subject： $y=\frac{x+b}{4 v+x}$	Calculate the area of a sector with $\begin{gathered} \theta=26^{\circ} \text { and } \\ r=11 \mathrm{~cm} . \end{gathered}$

Answers

55	$\frac{x-6}{x+2}$	$£ 4658.22$	$x=7$ $y=6$
$x^{2}+9 x^{2}+8 x-60$	$\frac{1}{25}$	$y=78 / \sqrt{ } x$	$£ 58.46$
nth term $=$ $2 n^{2}-3 n+3$	8.4	$\frac{8 \sqrt{ } 5}{5}$	$x=8$ $x=4$
$22 / 111$	$4 \sqrt{ } 2$	$x=\frac{b-4 v y}{y-1}$	$27.45 \mathrm{~cm}^{2}$

Speed - Time Graphs (Curves)

Here is a speed - time graph for a car.
It shows the first 16 seconds of its journey.
(a) Work out the average acceleration of the car between 4 and 12 seconds.
(b) Work out an estimate of the acceleration of the car at 2 seconds.
(c) By using 4 strips of equal width, work out an estimate for the distance travelled over the first 16 seconds of the journey.
(d) Is your answer to (c) an overestimate or an underestimate of the actual distance travelled? Explain your answer.
(e) Work out the average speed of the car over the first 16 seconds of the journey.

Watch this video to see how to do the examples. Remember to pause the video when promoted to copy the notes.

Speed - Time Graphs (Curves)

Here is a speed - time graph for a car.
It shows the first 16 seconds of its journey.
(a) Work out the average acceleration of the car between

4 and 12 seconds.

$$
\begin{aligned}
& \text { gradient of Line betweer } \\
& 2 \text { points }=\frac{\text { chargeiny }}{\text { changein } x}=\frac{8}{8}=1 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

(b) Work out an estimate of the acceleration of the car at 2 seconds.

- instantaneous acceloration = gradient of tongent at that point $=\frac{\text { changeiny }}{\text { angein } x}=\frac{12}{6}=2 \mathrm{~m} / \mathrm{s}^{2}$ (c) By using 4 strips of equal width, work out an estimate for the distance travelled over the first 16 seconds of the journey.
(1) $(4 \times 11) \div 2=22 \mathrm{~m}$
(3) $\left(\frac{15.5+19}{2}\right) \times 4=69 \mathrm{~m}$
(2) $\left(\frac{11+15.5}{2}\right) \times 4=53 \mathrm{~m}$
(4) $\left(\frac{19+22}{2}\right) \times 4=82 \mathrm{~m}$
(d) Is your answer to (c) an overestimate or an total distance $=226 \mathrm{~m}$ underestimate of the actual distance travelled?
Explain your answer.
the straight lives I drew lie

Underestimate below the curve decreasing the area to be calculated.
(e) Work out the average speed of the car over the first 16 seconds of the journey.

Back to the start!

I'm giving it a try!

Answers

Here is a speed - time graph for a bus. It shows the first 24 seconds of its journey.
(a) Work out the average acceleration of the bus between 0 and 10 seconds.
(b) Work out the average acceleration of the bus between 16 and 24 seconds.

Here is a speed - time graph for a car. It shows the first 25 seconds of its journey.
(a) Work out the average acceleration of the car between 0 and 10 seconds.
(b) Work out the average acceleration of the car between 18 and 24 seconds.

Answers

I'm giving it a try!

(a) $1.6 \div 10=0.16 \mathrm{~m} / \mathrm{s}^{2}$
(b) $6 \div 8=0.75 \mathrm{~m} / \mathrm{s}^{2}$

(a) $30 \div 10=3 \mathrm{~m} / \mathrm{s}^{2}$
(b) $-20 \div 6=-3.3 \mathrm{~m} / \mathrm{s}^{2}\left(=3.3 \mathrm{~m} / \mathrm{s}^{2}\right.$ deceleration)

Now that you have marked your work, take time to reflect on how confident you are feeling.

I'm building my confidence!

Answers

Here is a speed - time graph for a bus.
It shows the first 24 seconds of its journey.
(a) Work out an estimate of the acceleration of the bus at 10 seconds.
(b) Work out an estimate of the acceleration of the bus at 20 seconds.

Here is a speed - time graph for a car. It shows the first 25 seconds of its journey.
(a) Work out an estimate of the acceleration of the car at 6 seconds.
(b) Work out an estimate of the acceleration of the car at 20 seconds.

Answers

I'm building my confidence!

(a) $3.6 \div 11.6=0.31 \mathrm{~m} / \mathrm{s}^{2}(2 \mathrm{dp})$

(a) $13 \div 5=2.6 \mathrm{~m} / \mathrm{s}^{2}$
(b) $-27 \div 9=-3 \mathrm{~m} / \mathrm{s}^{2}\left(=3 \mathrm{~m} / \mathrm{s}^{2}\right.$ deceleration)
(b) $6.8 \div 9.2=0.74 \mathrm{~m} / \mathrm{s}^{2}(2 \mathrm{dp})$

Now that you have marked your work, take time to reflect on how confident you are feeling.

I'm ready for anything!

Here is a speed - time graph for a bus.

It shows the first 24 seconds of its journey.
(a) By using 1 strip, work out an estimate for the distance travelled over the first 8 seconds of the journey.
(b) By using 3 strips of equal width, work out an estimate for the distance travelled over the first 24 seconds of the journey.
(c) Is your answer to (b) an overestimate or an underestimate of the actual distance travelled? Explain your answer.
(d) Work out the average speed of the bus over the first 24 seconds of the journey.

Here is a speed - time graph for a car.
It shows the first 25 seconds of its journey.
(a) By using 1 strip, work out an estimate for the distance travelled over the first 5 seconds of the journey.
(b) By using 5 strips of equal width, work out an estimate for the distance travelled over the first 25 seconds of the journey.
(c) Is your answer to (b) an overestimate or an underestimate of the actual distance travelled?
Explain your answer.
(d) Work out the average speed of the car over the first 25 seconds of the journey.

Answers

I'm ready for anything!

(a) $(1.2 \times 8) \div 2=4.8 \mathrm{~m}$
(a) $(20 \times 5) \div 2=50 \mathrm{~m}$
(b) $\frac{(1.2+4)}{2} \times 8=20.8 \mathrm{~m} \frac{(4+10)}{2} \times 8=56 \mathrm{~m}$

Total distance $=4.8+20.8+56=81.6 \mathrm{~m}$
(c) Overestimate as the straight lines I have drawn lie above the curve increasing the area I am calculating.
(d) $81.6 \div 24=3.4 \mathrm{~m} / \mathrm{s}$ $(20 \times 5) \div 2=50 \mathrm{~m}$
(d) $500 \div 25=20 \mathrm{~m} / \mathrm{s}$
(b) $\frac{(20+30)}{2} \times 5=125 \mathrm{~m} 30 \times 5=150 \mathrm{~m} \frac{(30+20)}{2} \times 5=125 \mathrm{~m}$

Total distance $=50+125+150+125+50=500 \mathrm{~m}$
(c) Underestimate as the straight lines I have drawn lie below the curve decreasing the area I am calculating.

Now that you have marked your work, take time to reflect on how confident you are feeling.

Extension

Here is a speed-time graph for a car. It shows the first 16 seconds of its journey.

Calculate the average acceleration of the car over the first 16 seconds of its journey.
Can you find a time at which the cars instantaneous acceleration is equal to its average acceleration?

Answers

Here is a speed-time graph for a car. It shows the first 16 seconds of its journey.

Calculate the average acceleration of the car over the first 16 seconds of its journey.
Can you find a time at which the cars instantaneous acceleration is equal to its average acceleration?

The average acceleration over the first 16 seconds is equal to the instantaneous acceleration at approximately 4 seconds. This is where the chord and tangent are approximately parallel, so the gradients are equal.

Homework

Retrieval Homework	Topic Homework
1) Solve $x^{2}+3 x-18=0$	${ }_{8}{ }^{\text {Speed (m/s) }}$
2) A bag is reduced by 15% to $£ 41$. How much did it cost originally?	
3) Write $0.206206 \ldots$ as a fraction.	
	Here is a speed - time graph for a bike. It shows the first 16 seconds of its journey. (a) Work out the average acceleration of the bike between
4) Simplify $\sqrt{300}$	4 and 13 seconds. (b) Work out an estimate of the acceleration of the bike at 4 seconds. (c) By using 4 strips of equal width, work out an estimate for the
5) Calculate the $n^{\text {th }}$ term of the sequence $9,18,31,48,69$	(d) Is your answer to (c) an overestimate or an underestimate of the actual distance travelled? Explain your answer. (e) Work out the average speed of the bike over the first 16 seconds of the journey.

My Reflections...

Answers

Answers

Homework

Retrieval Homework

(1) $x=3, x=-6$
(2) $£ 48.24$
(3) $\frac{206}{999}$
(4) $10 \sqrt{3}$
(5) $2 n^{2}+3 n+4$

Topic Homework

(a) $3.2 \div 9=0.3 \dot{5} \mathrm{~m} / \mathrm{s}^{2}$
(b) $4 \div 8=0.5 \mathrm{~m} / \mathrm{s}^{2}$
(c) $8+19.2+25+29.8$ $=82 \mathrm{~m}$
(d) Underestimate as the straight lines I have drawn in (c) lie below the curve decreasing the area I am calculating.
(e) $82 \div 16=5.125 \mathrm{~m} / \mathrm{s}$

